Barisan Dan Deret Aritmatika 9.2

Dari Crayonpedia

Langsung ke: navigasi, cari

Untuk materi ini mempunyai 4 Kompetensi Dasar yaitu:

Kompetensi Dasar :

  1. Menentukan pola barisan bilangan sederhana
  2. Menentukan suku ke-n barisan aritmatika dan barisan geometri
  3. Menentukan jumlah n suku pertama deret aritmatika dan deret geometri
  4. Memecahkan masalah yang berkaitan dengan barisan dan deret

Daftar isi

Barisan dan Deret Aritmatika

Barisan Aritmatika

          (1) 3, 7, 11, 15, 19, ...
          (2) 30, 25, 20, 15, 10,...

Perhatikan bahwa selisih di antara suku-sukunya selalu tetap. Barisan yang demikian itu disebut barisan aritmetika. Selisih itu disebut beda suku atau beda saja dan dilambangkan dengan c.
          Barisan (l) mempunyai beda, b = 4. Barisan ini disebut barisan aritmetika naik karena nilai suku-sukunya makin besar.
          Barisan (2) mempunyai beda, b = -5. Barisan ini disebut barisan aritmetika turun karena nilai suku-sukunya makin kecil.
Suatu barisan U1, U2, U3,....disebut barisan aritmetika jika selisih dua suku yang berurutan adalah tetap. Nilai Untuk menentukan suku ke-n dari barisan aritmetika. perhatikan kembali contoh barisan (l).
        3, 7, 11, 15, 19, ...
Misalkan U1, U2, U3 , .... adalah barisan aritmetika tersebut maka
       U1 = 3 =+ 4 (0)

       U2 = 7 = 3 + 4 = 3 + 4 (1)
       U3 = 11 = 3 + 4 + 4 = 3 + 4 (2)
            ....
       Un = 3 + 4(n-1)

Secara umum, jika suku pertama (U1) = a dan beda suku yang berurutan adalah b maka dari rumus Un = 3 + 4(n - 1) diperoleh 3 adalah a dan 4 adalah b. Oleh sebab itu, suku ke-n dapat dirumuskan

       Un = a + b(n-1)

Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun.

        U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
        U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta

Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n

Deret Aritmatika

Seperti telah dibahas sebelumnya, deret adalah bentuk penjumlahan dari suku-suku pada sebuah barisan. Jika U1, U2, U3, ... barisan aritmetika. U1, U2, U3, ... adalah deret aritmetika.
Untuk mendapatkan jumlah n suku pertama dari deret aritmetika, perhatikan kembali deret yang dihasilkan barisan (l ).
      3 +7 + 1l + 15 + 19 + ...
Jika jumlah n suku pertama dinotasikan dengan.Sn maka S dari deret di atas adalah :

Gambar:58.jpg

Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah

Gambar:59.jpg

Jika nilai Un tidak diketahui, kita gunakan rumus Un, barisan aritmetika, yaitu Un = a + (n-1)b, sehingga jumlah n suku pertama adalah
Gambar:60.jpg

jumlah n suku pertama dari suatu deret aritmetika yang suku pertamanya a dan beda b adalah
Gambar:61.jpg

Untuk memudahkan perhitungan Sn suatu deret aritmetika, perhatikan hal-hal berikut. a. Jika diketahui suku pertama a dan beda b, gunakan rumus Gambar:62.jpg b. Jika diketahui suku pertama dan suku ke-n,gunakan rumus Gambar:63.jpg

Referensi :


Beri Penilaian

Rating : 4.1/5 (166 votes cast)


Peralatan pribadi